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Abstract-Comparison of the numerical and integral method solutions for the buoyant turbulent jet 
discharging vertically into unstratified surroundings of the same fluid show that essentially similar results 
are obtained when the property variation is small and appropriate turbulence parameters are used in 
the two kinds of calculation. Experimental results for a jet of heated air indicate correspondence with 
the predictions which. for the integral method. involve the entrainment coefficient appropriate to the 
isothermal jet. For specification of the entrainment coefficient for buoyancy. and a ratio of thermal 
to hydrodynamic widths which approaches unity as the flow approaches the asymptotic situation of the 

plume from a point source. 

NOMENCLATURE 

b.. bT. width parameters for specification of 
Gaussian profiles for velocity and 
temperature; 

c, specific heat; 

II. gravitational acceleration; 

G. 
g/m- Tk.)r 

group 2 ’ reciprocal of the square 
UC 

r, 
7. 
t’. 
U. 

X 

of a Froude number: 

mixing length ; 
total thermal enerm in the flow; 
radial distance from centerline; 
absolute temperature; 
radial velocity ; 

axial velocity; 
distance in the flow direction. 

Greek symbols 

V. kinematic viscosity: 

P. density: 
/.. ratio b,ib. in the region of developed flow. 

Subscripts 

C, 

:’ 

centerline: 
ambient; 
at the nozzle outlet (x = 0): 

e. 
m, 

at the end of the region of flow development; 
mean value (mixed mean for temperature). 

INTRODUCIION 

THE SPECIFICATION of the temperature and velocity 
profiles in an upward directed, turbulent, buoyant.jet 
in unstratified surroundings is not yet fully established 
because of ambiguities related to the region of flow 
development and to some continuing uncertainty about 
the parameters that are needed to characterize the 
turbulent flow in the region in which the flow is fully 
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developed. Here the numerical and integral methods 
of prediction of the flow are reviewed and the predic- 
tions thereof are compared on the basis of the par- 
ameters which best relate these predictions to exper- 
imental results for the temperature and velocity fields 
that have been obtained for the vertical discharge of 
heated air through a round jet into ambient, un- 
stratified, air surroundings. 

NUMERICAL METHOD 

Given the initial velocity and temperature profiles 
issuing from the jet, the boundary layer forms of the 
momentum and energy equations can be solved numeri- 
cally by the method of Patankar and Spalding [l]. 
If these initial profiles are taken to be uniform, economy 
in the incrementing of the lateral domain is achieved 
by concentrating the calculation in the shear layer that 
develops initially, with the uniform velocity in the 
interior of this shear layer varying as u(du/dx) = 
g [brn/p) - 11. Even with this arrangement, exceedingly 
small forward steps are required initially where the 
flow is laminar and this restraint can be relieved at 
first defining entrainment on the inner and outer edges 
of the shear layer from Lock’s [2] analytical solution 
for the development of the shear layer between parallel 
streams. 

A position of transition to turbulence must be 
selected and the choice is uncertain in terms of available 
results. Liepmann and Laufer [3] specified transition 
at U~,VV = 50000 for an essentially two dimensional 
mixing zone, but many experiments on jets have in- 
ferred much smaller values of this Reynolds number. 
Cederwall [4] indicated that the flow from a jet ap 
peared to be turbulent from the jet exit onward when 
the Reynolds number 14~r~/v exceeded 1000, and for 
this value, transition at x/r0 = 1 gives uox/v = 1000. 
Clearly, the selection of the transition point is some- 
what arbitrary. 

After transition the single equation model of turbu- 
lence is used, as described by Launder [5], with the 
initial distribution of turbulent kinetic energy obtained 
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by equating the terms for the production and dissi- 
pation of kinetic energy and using the upstream, 
laminar, velocity profile in this evaluation. With this 
specification and the definition of the parameters of the 
turbulent flow model the turbulent flow calculation can 
proceed. When the inner surface of the shear layer meets 
the centerline. at Y = s,. the inner boundary condition 
becomes one of symmetry and the lateral incrementing 
of the flow thereafter extends from 0 < r c I’,. In the 
present context the flow is considered to be “developed” 
after this location. 

The turbulence model used here involved the factor 
of 0.50 in the term for the production of kinetic energy, 
and the factor 0.125 in the term for its dissipation. 
Turbulent Prandtl numbers were taken as 0.70 for 
thermal energy and 1.7 for kinetic energy. The mixing 
length was based on the distance Arr between the points 
at which the velocity ratios u/u, were 0.99 and 0.10, 
the first ratio being takendifferent than unity to provide 
for a reasonable specification of Art in the shear layer 
in the developing region. A linear augmentation of the 
mixing length due to relative buoyancy was included. 
and the mixing Iength was defined as 

i=O.lArl l+,sP(6-T~‘A~t 
i u: 1 (1) 

where for a gas p is taken as l/1;, . 
With B taken as 14.1 this model gives resuhs which 

coincide acceptably with the existing predictions for a 
plume above a point source and a jet issuing from a 
point source, and the use of the relative buoyancy factor 
in equation (1) eliminates the necessity of changing the 
ratio of l/Arr for these two kinds of flow. The factor 
of course, is expressible in terms of the Richardson 
number as done by Koosinlin and Launder [6] and 
if that number is evaluated on the basis of Gaussian 
velocity and temperature profiles, with Arr as defined 
above, the value of B = 14.3 corresponds to a factor of 
4.23 in the Koosinhn relation. where he used 5.0. 

INTEGRAL METHOD 

If density variation is accounted for only in the 
buoyant force term, then integration of the boundary 
layer forms of the continuity, momentum, and energy 
equation. gives, for constant density (unstratified) 
surroundings : 

d m 

dxo J 
ur dr = - (vr& 

u=rdr = g u 0X NT- T,)rdr 
i (3) 

d 3u 

dxo i 
u(T-- ‘I,)rdr = 0. (I) 

if a Gaussian distribution is used for the profiles of 
the shear layer, so that u/u, = 1, r < r,; u:u, = 
e-fcr-r”)ib”l’; r > r, and (T- T,)/(T,- T,) = 1. r < ry: 

(T- T,_)/(T,- T,) = e-x’r-rTB~h7.1’, r > rT; the integrals 
of equations (2H4) are specified in terms of h,, br, r, 
and rr, the fatter two of course defining the inner limits 
of velocity and temperature variation. Abraham [7] 

solved equations (3) and (4) in this way. choosing 
ru = rT pro~rtionaf to X. hr = 1.13h, and h,, .Y = 0.13. 
and as a consequence there were determined the dis- 
tance .x. at which r, = r-r = 0. and u,: tlq at that location. 
Hirst [8] subsequently eliminated the assumption of 
rU proportional to x and instead included equation (3). 
for which he defined an entrainment - frr), based on 
Albertson’s [9] formulation for the non-buoyant situ- 
ation. multiplied by a linear function of the buoyancy 
parameter evaluated at the jet outlet [gflro( T- T,. 1) r&f 
the constant in this linear relationship being determined 
by comparison with Abraham’s solution for small 
values of this parameter. In the present instance 
Abraham’s solution was used for the developing region, 
but in a slightly altered form. based on the integration 
of equations (2) and (3) using average values for the 
integrals on the right, and the assumption of potential 
Row in the central region of the flow. Such an operation 
produces values of x,;ro, and bu,rO and U,,UQ at the 
end of the development region, where the complete pro- 
fife is first Gaussian, in terms of an average of an 
entrainment coefficient defined locally as ( -IT-, = 
m, b’ where b’ is the radius at which cl/u, = 1. t(. This 
result was compared to that of Abraham and relatively 
good correspondence was obtained for an average x of 
0.0424 +O.:![g/?(T- T,)ro;‘uQ Figure 1 contains curves 
showing these results, and this figure contains a dashed 
curve to indicate Abraham’s results for .xz rO. When 
b,jro and u,;uo are known. equation (3) gives 

This differs from Abraham’s result in producing 
bT/b, < 1 at the beginning of the development region. 
because with buoyancy U,;UO > 1 there. 

Figure I contains points to indicate the results from 
the numerical calculation, made as indicated already, 
but with B = 43, the larger value being needed to obtain 
the correspondence of X,,‘TO with Abraham’s result. 
These calculations were made with relatively small 
values of (To - TD). large vafues of the buoyancy being 
obtained by increasing y. Relatively large values of the 
jet Reynolds number. UNTO 1’ of the order of 2500 were 
used and transition was taken close to the nozzle. 
cq!:ro) r 0.5. The Reynolds number was large enough 
to essentially eliminate the effect of molecular transport 
as soon as the flow was made turbulent. 

After the attainment of Gaussian profiles with rr 
and r, equal to zero. equations (2)-(4) take the familiar 
forms associated with the fully developed region, for 
which i is defined as bT‘b,: 

d 
- u,b.2 = 2X4,b. 
dx 

[u,bf(7-_T ,sp] = ?!$!! lci’ c L -Y-j---. (4a) 
lr pc A_ 

Fox [lo] integrated the equation for the kinetic 
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FIG. 1. Quantities at the end of the development region. The solid curves 
are the present interpretation based on Abraham’s results: the dashed curve 
is Abraham’s result for xC;ro. The points are the results from the numerical 

computation. 

energy of the mean flow that is obtained by multiplying 
the momentum equation by u and by comparison of 
this integral form to the above forms of the continuity 
and momentum equation showed that the entrainment 
coefficient should be of the form 

It is implied but not necessary that ~1 be independent 
of the buoyancy; taken so, a1 is then the entrainment 
coefficient of the non buoyant jet, for which a value of 
0.055 is suitable and which was used herein. For plumes 
above a point source. for which i, is specified. equations 
(2a), (3a). (4a) can be integrated to give the usual power 
law forms U, 5 x -lJ3. (7,- 7J _ x-5/3, Rouse and Yi 
[ 1 l] were among the first to do so for IL = 1. These 
equations can also be integrated analytically from 
initial conditions such as defined on Fig. 1 but only 
for i = 1. But this value of i. is inconsistent, since to 
satisfy the energy equation, equation (5). 1 must be less 
than unity at that location. 

To allow for a variation of i. from its initial value, 
another relation can be obtained from the energy 
equation multiplied by (T-r,) and then integrated. 
This is like Fox’s procedure, except that this new 
equation has no physical significance. The ultimate 
result is the equation 

d 1.’ 

-K > 
- (bL)(T,- IJ’c,p, 

dx i.‘+-2 1 
= -; :u,b.(g/!Q2(Tc- T,)‘. (6) 

t 
Here CT, is the turbulent Prandtl number; when it is 

specified, equation (5) determines i.. For the plume and 
for the non buoyant jet originating from point sources, 
equation (6) does indicate a constant value of i., 
depending upon the turbulent Prandtl number. For 
the plume CT, = 0.60 gives E. = 1. 

For the jet, Go = 0, the integral solution is asymptotic 
to the solution for a jet issuing from a point source, 
and the choice of u, = 0.60 in the integral solution 
yields i, = 1.55. The numerical solution gives a final E. 
of 1.20 and is indicated on Fig. 4 to approach the 
asymptote for this value of i.. The latter is preferable 
in terms of available results, though the present 
measurements of centerline temperature appear to be 
in better accord with the former. 

SOLUTION 

Figure 2 shows the centerline temperatures that are 

predicted by the numerical and the integral methods 

, 
4 6 8 IO 2 34 6 8 Klo 2 

XI r. 

FIG. 2. The centerline temperature. Solid curves are predic- 
tions from the integral solution. dashed curves give the 
predictions from the numerical calculations and also the 
plume asymptotes. Asymptotes are given both for 7. = 1.2 

and 1.55 for the jet, Go = 0. 
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FIG. 4. Ratio of thermal and velocity widths. Solid curves 
are from the integral solution; dashed curves are from the 

numerical solution. The curves begin at .Y = x,; Fig. 1. 

of solution, with dashed curves used for the numerical 
and solid curves for the integral results. These begin 
at slightly different values of xe,‘ro, as indicated by the 
differences in the integral and numerical results on 
Fig. 1. For buoyant jets, on the figure 

These results soon converge and ultimately approach 

the asymptotes that are indicated on the figure, which 
are the predictions for the plume above a point source. 
with 3, = 0.055. i, = 1. and Fox’s specification of 2, 
giving a = 0.092. There is a difference for the jet, 
Go = 0. For this case the numerical and integral solu- 
tions are not the same and each tends to its individual 
asymptote, for I. = 1.2 and i. = 1.55 as already noted. 

Figure 3 shows the centeiline velocities, for which 
the;e is general accord for the two methods of predic- 
tion. There the solid curves, from the integral method. 
begin with the values indicated for the starting point 
as given by Fig. 1. 

Figure 4 shows the values of i. associated with the 
two kinds of solution. For the solid curves associated 
with the results from the integral method, the asymp- 
tote is 1.55 for Go = 0 and 1.0 for Go > 0. For Go > 0 

the numerical method was not run far enough to deter- 
mine the asymptote. but it appears to be about 
,i = 0.95. In this respect it is to be noted that the radial 
velocity and temperature profiles are not quite 
Gaussian, being slightly lower for r/b < 1 and slightly 
higher for r/b > 1. Thus, the comparison that is made 
for i., with b evaluated at 1;e of the centerline value, 
with the i, of the Gaussian profiles is not a very direct 
approach. The profile shapes given by the numerical 
method are, in fact. closer to those predicted by 

Schmidt [ 121, but the profiles of the numerical solution 
are also not quite similar in respect to the distance, x. 

EXPERIMENTS 

Temperature and velocity measurements, by means 
of a thermocouple and hot film anemometer, were 
made in a heated air jet directed vertically upward 
at the center of a rectangular enclosure 1.4 x 1.4m in 
plan and 1.7 m high from a 10 cm high screened opening 
at the floor to a 5cm high screened opening at the 
top, above which a top enclosure extended another 
O&m. Numerous thermocouples were located in one 
corner and at the center of an opposite side of the 
enclosure for the measurement of ambient air tempera- 
ture, which for the data cited here was invariable with 
height. 

The jet was produced by nozzles with r0 = 1.15 and 
0.5 cm and these were mounted on a tube with an inside 
radius of 1.15 cm. At 7.1 cm below the nozzle mounting 
flange there was a mitre turn to the horizontal. The 
horizontal portion of the tube contained an electrical 
cartridge heater, with the supply air passing through 
the 1.2mm annular space between the tube and the 
outside of the heater. The space between the end of 
the heater and the bottom of the nozzle was filled with 
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stainless steel wool to aid in the equalization of velocity 
and temperature. Particularly with the larger nozzle, 
for which there was no contraction from the plenum, 
this produced somewhat irregular velocity profiles, 
which were but marginally improved by the addition 
of hardware cloth screen between the nozzle and the 
plenum. With the contraction produced by the smaher 
nozzle, the velocity profile was uniform at the outlet, 
except near the outer radius, though because of the 
smaller size the ratio of mean to ~nter~ne velocity for 
the small nozzle 0.82, was less than the 0.91 of the 
larger nozzle. Temperatures were relatively uniform 
over the central region of the flow, but showed a sub- 
stantial drop near the wall of the nozzle, to the extent 
that the central temperature exceeded substantially the 
mean value as the magnitude of the temperature was 
increased. 

Because of the low efficiency involved in the heating 
of the air the losses were substantial, and the pienum- 
heater assembly was water jacketed outside of its 
ins~ation to avoid the production of a plume by the 
losses from that unit. 

The air was metered before introduction to the 
heater, and the relative radial distribution of velocity 
at the nozzle outlet was determined with the hot film 
when operating with air at room temperature. The mass 
balance then gave absolute values and thus the absolute 
hot film calibration for low temperatures, with the film 
at the nozzle center. At elevated temperatures it was 
assumed that the velocity profile, u/u,,,, remained the 
same as it was at low temperatures and then a radial 
temperature distribution measurement specified the 
absolute velocities and the total energy rate. The high 
temperature film calibration was based on the velocity 
calculated this way. 

Since the buoyancy factor, evaluated as 

Go = sB(r,o- ZJro 

40 

depends on the cube of the nozzle radius for a given 
mass flow rate, high values of the buoyancy could only 
be obtained with the larger nozzle by the use of values 
of (T,o - 7,)as large as 160°C and with low mass flows, 
so that the nozzle Reynolds numbers became as low 
as 177. This restricted the appraisal of the flow develop 
ment region, as is indicated in the results that follow. 

The temperatures and velocities that are shown as 
the results are mean values obtained by averaging with 
respect to time, for periods of about a minute, the 
fluctuating signal as recorded on a strip chart. This 
fluctuation, of relatively long period (of the order of 5 s), 
was greatest in the region of x/r. 20, where for tem- 
perature the ratio of the amplitude to the mean value 
of (7’- T&) was almost 0.30; this decreased to 0.085 at 
x/r0 = 57. The effect increases with the amount of 
buoyancy. Radially it is highest away from the center- 
line and remains significant to the outer edge of the flow. 

As noted, all the results presented here were obtained 
with the top on the enclosure, so that ~mmunication 
with the exterior was only through the two screened 
openings. Despite the relatively small size of the BOW 

relative to that of the enclosure, the enclosure had some 
effect, as could be discerned when the top section was 
removed. There was no effect for Go = 0 but effects 
were discernible for Go as low as 0.01; there the 
centerline temperatures were relatively lower, corre- 
sponding asymptotically to a value of a = 0.11 rather 
than 0.092, with a corresponding increase in width of 
the Sow. The operation with the top on the enclosure 
was chosen as desirable to avoid jet flu~uations, and 
causing no more boundary constraint than in most 
comparable experiments, but the sensitivity of the 
entrainment to the nature of the enclosure has not yet 
been explained. 

CENTERLINE TEMPERATURES 

Figure 5 contains some of the curves for the integral 
solution that were shown in Fig. 1, and also contains 
centerline temperatures, z, evaluated as (T,- Tb)/ 

(Lo- T,), where T,o is the mixed mean exit tempera- 
ture, that data being shown only for the whole region 
of developed flow and there only for low values of Go. 

x/r. 

FIG. 5. Experimental values of the centerline temperature. 
Solid curves are from the integral solution, as on Fig. 2. The 
results of Abraham [7] are for a Reynolds number over 1300. 

For the data, Go was evaluated with /3 taken as l,‘T’. 
Because &, the temperature at the jet centerline, 
exceeded Tmo more severely as Go increased. the ratio 

(%I- TaJ/(T,o- T,) being as much as 1.6 for Go = 0.67, 
the ratio (K - Tm)/( Tmo - T,) in the development zone 
exceeds unity, sometimes substantially. As .is shown 
elsewhere [ 151 the value of (7, - T, )/Go - TX ) begins 
to drop below unity near x/r0 = 4, and attains a value 
near 0.90 at x/r = 8 for G --+ 0 and at about X/TO = 6 
for Go = 0.26. This is at least the trend indicated by 
the theory as shown on Fig. 2 but the resuits scatter 
and are thus not conclusive enough for a direct 
appraisal of the theory, particularly as the effect of 
transition length is dso involved. Later, more con- 
sideration is given to the effect of low nozzle Reynolds 
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numbers but the representation of Fig. 5 contains data 
only for relatively long values of the x/r0 where that 
data approaches the theoretical values from above. A 
separate analysis by the integral method accounted for 
( T,o - T,) > ( T,o - T,) by an adjustment of the value 
of /( given by equation (5) at .Y = X, to accommodate 
this excess and this revealed a very rapid change in i 
in the region immediately downstream of x = x, so 
that (T,- T,)/tT,o - T,) attained practically the same 
value for 1 < ( T,o - T,);(Tmo- T,) < 1.6 as it did for 
(T,o--T,)=(T,~--~,) after the former ratio (the 
ordinate of Fig. 5) was less than 0.85. 

The results that are shown on Fig. 5 show that the 
integral method predicts adequately the experimental 
centerline temperature for all x > xe when s, as pre- 
dicted is approximately correct and for x x x,. but less 

than that needed for asymptotic behavior, when the 
results exceed the prediction in x > I,. 

Figure 5 also contains four points due to Abraham, 
obtained with Reynolds numbers above 1300 using salt 
solutions in water to produce buoyancy, which tend to 
confirm better the predictions in the region of x near 
.K~ and support his appraisals of the length of the 
development region. 

CENTERLINE VELOCITIES 

Figure 3 contains experimental centerline velocities 
for low values of Go, most of which were obtained with 
a hot film anemometer using the calibration as already 
described, but some of which were obtained with a hot 
wire for which the calibration was calculated from 
geometry and the usual Nusseh number relation. The 
results from the former were apparently better near the 
nozzle, where the temperatures were high, and the latter 
far from the nozzle, where they were low. The data 
shown on Fig. 3 tend to confirm the predictions for 
the jet, GO = 0, and at least show the trends that are 
indicated by the theory for the values of Go that are 
greater than zero. 

RADIAL VELOCITIES, TEMPERATURES AND WIDTHS 

Radial velocity and temperature profiles were ob- 
tained at a number of locations but these are not shown 
here. In the region of developed flow these indicated 
profiles of the Gaussian type. though the data scatter 
was such that no further distinction about profile shape 
was possible. The measurement at r > 0 involves 
greater amplitudes in the temporal variation already 
noted. with increased difficulty in averaging, and the 
accounts for some of the additional uncertainty in the 
radial profiles. 

The top part of Fig. 6 shows the widths predicted for 
the jet, indicating the difference in iL = b,/b. already 
shown on Fig. 4. Data are shown, being the radii for 
the occurrence of I/e of the centerline value. The vel- 
ocity width. which is about the same for both predic- 
ions, is relatively confirmed, but the thermal width, bT. 
gives no definitive appraisal. 

The lower part of Fig. 6 shows widths associated 
with two values of Go. and the prediction for G = 0.1. 
With this much buoyancy, i. is near unity for both the 

FIG. 6. Velocity and temperature widths. Solid curves are 
from the integral method, dashed curves from the numerical 

method. 

integral and the numerical predictions. The data do 
indicate this, and for x/r < 25 the predictions are so 
close together that the data cannot be used to indicate 
a preference. For larger X/IO. for which only thermal 
widths are available, these are closer to the numerical 
prediction. 

CENTF,RLINE TEMPERATURE AND VELOCITY WITH 
LOW REYNOLDS NUMBERS 

The experimental values of the centerline tempera- 
ture were not shown on Fig. 5 for large Go and small 
.uiro because they were substantially above the theory. 
It was indicated in the discussion relative to that figure 
that this discrepancy was probably not due to the fact 
that ( T,o - T,) > ( Tmo - T,,) for these conditions and the 
difference was probably due to values of x, larger than 
those predicted by Fig. I because of the low Reynolds 
numbers associated with the large values of Go. Figure 
7 shows the centerline temperatures for a Reynolds 
number of 177, with Go = 0.26, as (T,- T,)/(T,o- 7”). 
Curve B of that figure is the prediction for Go = 0.25. 
by the integral method, beginning with Fig. 1, shown 
for the region for which it would be reasonably valid 
for the ordinate used on Fig. 7, for the value of 
(x0 - T,) = 1.6 ( f. - Tm) that prevailed for these re- 
sults. Curve A, as a contrast, is the integral prediction 
based on an arbitrary choice of x,/r0 = 14.8, with the 
associated starting values for the developing region 
obtained from Fig. 1 for this value of xe,‘ro, and E. 
further adjusted for the excess of centerline over the 
mean temperature at the nozzle. Once the calculation 
for developed flow is initiated. there is a precipitous 
drop in the predicted value of centerline temperature; 
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equation (5) rapidly increases the initially small R to a 
value of the outer of unity. The data are near this 
prediction but they exhibit a different trend; they do 
confirm the prediction at large x/r*, where the effect 
of the starting condition is no longer very important. 

Curves C and D are the results of numerical calcu- 
lation made with U,O roivo = 177 and the actual initial 
temperatures and velocities and transition lengths of 
x/r0 of 13 and 10.4 respectively. In these numerical 
calculations the initial flow subdivision was taken in 
0 < r < ro. so that an initial temperature profile could 
be taken to resemble that of the expe~ment, but this 
subdivision diminished the accuracy of shear layer 
development. since the incrementing was excessively 
large in the initial portion of this region. Thus, the 
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FIG. 7. Centerline temperatureand velocity at low Reynolds 
number. The data are for L’oroivo = 177, Go = 0.26: the 
predictions are for Go = 0.25. Curve A is the integral solution 
for x, = 14.8 ro. and associated starting quantities from 
Fig. 1. Curve B is from Figs. 2 and 3. Curves C and D. 
dashed. are numerical solutions with xp = 13 ro and 10.4 ro. 

hydrodynamics of this result are somewhat questjon- 
able. but the full radial incrementing allows the center- 
line temperature to decrease because of molecular 
transport in the laminar flow region. Once transition 
occurs, the large eddy diffusivity that exists. due at least 
in part to the method of initiation of the value of the 
turbulent kinetic energy, produces a drop in tempera- 
ture almost as great as produced by Curve A. The 
indication of the data is of a more gradual increase 
of the eddy transport. 

Figure 7 also shows predicted values of uc/&,. which 
here become substantial initially because of the large 
distances that exist before eddy transport is initiated. 
Data obtained with the hot film anemometer are shown, 
which at first tend to confirm Curve C but for x/r0 > 20 
are below Curve B, which here is indicative also of the 
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asymptotic behavior expected at longer distances, For 
x/r0 > 20 the velocities for this run were less than 
0.40 m/s and there is evidence from other runs that the 
instrument read too low in this range of velocities. 

CONCLUSION 

The buoyant jet discharging upward into ambient. 
unstratified surroundings of the same fluid has been 
investigated by means of an integral method of solu- 
tion using Gaussian profiles, initiated at the end of a 
flow development region which in nature was close to 
that specified by Abraham. These solutions are rela- 
tively close to numerical solutions which, compatibly 
with Abraham’s integral solution. were made turbulent 
immediately downstream of the nozzle. At large dis- 
tances from the nozzle both solutions are nearly 
identicaland tend to become asymptotic. corresponding 
to 2, = 0.055 and Fox’s definition of a, as used in the 
integral solution, and the value of i. equal to unity with 
which it terminates. 

Experimental results for centerline temperature agree 
with these theories for a relative buoyancy Go that is 
less than 0.02. for which in these experiments the nozzle 
Reynolds number, uor~ju~. was greater than 7.50. At 
larger buoyancies Go > 0.02, for which the Reynolds 
number was less. agreement is not obtained at small 
x,ho, but it is at large values for which the specification 
of flow development length is less important. 

Results for velocities. and velocity and thermal 
widths, reveal a greater scatter, but they do generally 
support the theory at least for the lower values of Go, 
for which the Reynolds numbers were greater than 750. 
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JETS TURBULENTS SOUS L’INFLUENCE DE FORCES DE GRAVITE 
ET DANS UNE ATMOSPHERE NON STRATIFIEE 

R&urn&La comparaison des solutions du problCme du jet turbulent se dtveloppant verticalement dans 
une atmosphkre non stratifiie du mZme fluide. solutions obtenues par voie numerique et par mtthode 
inttgrale montre que les rdsultats sont essentiellement similaires lorsque les variations de propriCtC sont 
faibles et que les paramttres caracttristiques appropriCs de la turbulence sont utilisis dans les deux tvpes 
de calcul. Les rtsultats exp&imentaux relatifs B un jet d’air chaud sont en accord avec les prtvisions 
qui, dans le cas de la mCthode inttgrale. font appel B un coefficient d’entrainement relatif au jet isotherme. 
a la dCfinition selon Fox du coefficient d’entrtiement en convection naturelle. et au rapport des 
Cpaisseurs thermiques et hydrodynamiques qui tend vers I’unitb lorsque l’&oulement approche la con- 

figuration asymptotique d’un sillage au dessus d’une source ponctuelle. 

TURBULENTE AUFTRIEBSSTRAHLEN IN NICHTGESCHICHTETER UMGEBUNG 

Zusammeafassung-Fir turbulente Auftriebsstrahlen, die vertikal in eine nichtgeschichtete Umgebung 
des gleichen Fluides aufsteigen, wird ein Vergleich der numerischen LGsung mit der Ltisung nach der 
Integralmethcde angestellt. Dabei ergeben sich im wesentlichen Phnliche Ergebnisse. solange die 
Aenderung in den Stoffwerten gering ist und geeignete Turbulenzpartieter bei beiden Rechnunpverfahren 
verwendet werden. Versuchsergebnisse fiir einen Warmluftstrahl zeigen eine cbereinstimmung mit den 
berechneten Werten. Bei der Integral methode wird dabei der Entrainment-Koeffizient ftir den Isothermen 
Strahl, die Fox-Spezifikation fiir den durch Auftrieb bedingten Entrainment-Koeffizienten und ein 
Verhiiltnis der thermischen zur hydrodynamischen Breite verwendet; letzteres geht gegen 1. wenn die 
StrGmung sich dem asymptotischen Fall der von einer punktfiijrmigen Quelle ausgehenden Auftriebs- 

strijmung nlhert. 

BCl-IJIbIBAHME TYPBYJlEHTHbIX CTPYm B HECTPATMWiL(MPOBAHHbIX CPEAAX 

AIliWTWllli-CCp~EM~~~UJt%i~8, IlOJly'IefWblXC nOMOUIbtOOgHC~eHHblX LiHHTerpaJlbHblX MCTOnOB 

LWI TypGynenTHoi-4 CTpyU, HCTeKaIOIUelt BepTWianbHO B HeCTpaTH&iUHpOE%3HHytO OKpyXtaio~ym 
CptYIy TOk XCe XCHLIKOCTH, nOKa3blBWT, 'ITO I'IOJly'IeHbl B OCHOBHOM CXOXCKHe pe'3yJlbTaTbi IlpH He3Ha- 

'IHTeJTbHOM H3MeHeHHH CBOkTB. B 060~~ CJIy'iaaX HCnOIIb3yfOTCn COOTBeTCTBylOUIHe napahieTpbl 

Typ6yneHrHocrn. 3KCnCpHMeHTanbH~enaHHble anal CTpyH HarpeTOrO Bo3ityXa CornacyroTcfl c pac- 

'IflHMMH,nOny'4eIfHbIMH HliTWpaJlbHblM MeTOnOM H C y'4eTOM KO3~HUHeHTa yHOCa, VT0 COOTBeT- 

CTByeT Uly‘IaIO H30TepMHYeCKOfi CTpyH, KOHBeKTHBHOrO KO3$+UlieHTa yHQCa n0 @OKCy, a TaKme 

Cy'ieTOMOTHOU.leHHITenJIOBOfi llrHpHHblKrH~~IIHH~MW'leCKO~,KOTOpOenpH6~l~maeTc~ KeLUUiHUe 

n0 Mepe TOfO, KaK nOTOK CTpeMHTCSl K aCHMnTOTHWCKOMy COCTORHHKY CTpyH OT TO'leqHOro 

UCTO'IHHKB. 


